
A Distributed Approach For Multi-Constrained Path Selection
And Routing Optimization

�

Zhenjiang Li
�

zhjli@soe.ucsc.edu�
Computer Engineering, Univ. of California, Santa Cruz

1156 high street, Santa Cruz, CA 95064, USA
Phone:1-831-4595436, Fax: 1-831-4594829

J.J. Garcia-Luna-Aceves
���

jj@soe.ucsc.edu�
Palo Alto Research Center (PARC)

3333 Coyote Hill Road
Palo Alto, CA 94304, USA

Abstract

Multi-constrained path (MCP) selection, in which the
key objective is to search for feasible paths satisfying multi-
ple routing constraints simultaneously, is known to be an
NP-Complete problem. Multi-constrained path optimiza-
tion (MCPO) is different from MCP mainly in that, the fea-
sible paths selected should also be optimal with regard to
an optimization metric, which makes path computation in
MCPO even harder.

We propose a fully distributed multi-constrained path
optimization routing (MPOR) protocol that solves the gen-
eral � -constrained path selection and routing optimization
problems. MPOR computes paths using distance vectors
exchanged only amongst neighboring nodes and does not
require the maintenance of global network state about the
topology or resources; supports hop-by-hop, connectionless
routing of data packets, and implements constrained path
optimization by distributively constructing an � -optimal
path set (i.e., the shortest, the second shortest and up to
the � th shortest path in terms of the optimization metric)
for each destination at each node. Simulations show that
MPOR has satisfactory routing success ratios for multi-
constrained path selection, and performs consistently with
varying number of constraints. For constrained path opti-
mization, MPOR has high probabilities of finding feasible
paths that are also optimal or near-optimal for the given
optimization metric.

1This work was supported in part by the Baskin Chair of Computer
Engineering at UCSC, the National Science Foundation under Grant CNS-
0435522, the U.S. Army Research Office under grant No. W911NF-05-1-
0246. Any opinions, findings, and conclusions are those of the authors and
do not necessarily reflect the views of the funding agencies.

1 Introduction

A central problem in QoS routing consists of finding
feasible paths that satisfy multiple performance oriented
constraints (e.g., bandwidth, end-to-end delay and jitter)
between a source and a destination. In some scenarios,
these feasible paths must also be optimized with regard to
(w.r.t.) a given optimization metric (e.g., hop-constrained
widest-path routing, delay-constrained least-cost path rout-
ing). The first problem is known as the NP-hard multi-
constrained path (MCP) selection problem, and the second
is called the multi-constrained path optimization (MCPO)
problem. Many heuristic algorithms have been proposed to
solve each problem. However, only a few approaches ad-
dress both problems simultaneously, especially for the gen-
eral � -constrained path optimization problem.

To date, most existing constrained routing algorithms
deal with routing subject to two constraints, or its opti-
mization case–the restricted shortest path (RSP) problem,
in which the task is to seek paths that satisfy one constraint
while optimizing another metric. Such MCP and RSP prob-
lems are not strong NP-complete, in that there are pseudo-
polynomial running time algorithms to solve them exactly,
and the computational complexity depends on the values of
link weight in addition to the network size [5]. However,
their complexity is prohibitively high when the values of
link weight become large.

Based on the latter observation above, Chen and Nahrst-
edt [1] proposed to scale one component of the link weight
down to an integer that is less than ���
	�� � 	

�
, where � is a

pre-defined integer and ��� is the corresponding constraint
on weight component ��� . They prove that the problem af-
ter weight scaling is polynomially solvable by an extended
version of Dijkstra’s (or Bellman-Ford) algorithm, and any
solution to the latter is also a solution to the original MCP
problem. The running time is ������������� when the extended
Dijkstra’s algorithm is used; and it is ��� �
!"�#� when the

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
A Distributed Approach for Multi-Constrained Path Selection and
Routing Optimization

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California Santa Cruz,Computer Engineering,1156 High
Street,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

extended Bellman-Ford algorithm is used, where ! and �
are the number of links and nodes, respectively. However,
as shown in [7], satisfactory performance is achievable only
when parameter � is large enough (e.g., ��� ���

), which
incurs considerable computation complexity.

Another commonly used scheme for MCP is to define a
good link-cost (or path-weight) aggregation function based
on the routing metrics and the given constraints. Then
any shortest path algorithm can be used to compute the
shortest path w.r.t. the single aggregated metric. Jaffe [5]
was the first to use a linear link-cost function � �����	� �
�� �� �����	� ����� � � ������� � , in which � �	������� . Ever since,
both linear and non-linear aggregation functions have been
proposed. The major limitation of this approach is that the
ability to find feasible paths based on an aggregated metric
largely depends on the quality of the functions being used,
and most of them are empirical heuristics. Consequently,
the shortest path computed w.r.t. the single aggregated met-
ric may not simultaneously satisfy the multiple constraints
being considered.

The general � -constrained path computation has re-
ceived far less attention than the � -constrained MCP or RSP.
Yuan [14] generalized the ideas of link-weight scaling as the
limited-granularity (LG) heuristic, and also proposed the
limited-path (LP) heuristic in which � non-dominated paths
are maintained at each node. Then an extended Bellman-
Ford algorithm is used to work with one of them to solve
the general � -constrained MCP problem. The running time
of Yuan’s algorithm is � ��������! , where � ��� is the size of
the table to use, for LG; and it is �����#! , where � is the
number of path to maintain, for LP. The performance and
complexity of Yuan’s heuristics depend on the number of
possible values to which link weight can be scaled down, or
the number of paths to maintain at each node. For Yuan’s
algorithms to work correctly, global network state has to be
available to nodes that perform the path computation.

The implementation strategies for QoS routing can be
classified into centralized source routing and distributed
routing. Most constrained routing algorithms proposed to
date use centralized approaches, i.e., they compute feasible
paths at each source, and simply assume the availability of
global network state whenever they are needed. Central-
ized MCP algorithms suffer from high computation com-
plexity at the source nodes, sluggish response to network
changes, and excessive overhead caused by disseminating
topology and resource information throughout the network,
which significantly limit their scalability. Due to the use of
source routing, a complete feasible path towards the des-
tination usually needs to be established before actual data
are sent out (i.e., connection oriented), or appended to the
header of every data packet, which may increase the packet
delivery delay and consume large fraction of the bandwidth
when the paths being used are long.

Distributed MCP algorithms compute feasible paths lo-
cally at each node, and forward packets based only on their
destination addresses on a hop-by-hop basis. Distributed
routing is more responsive, robust and scalable than cen-
tralized schemes mainly in that, nodes independently make
routing decision and therefore are able to respond to net-
work dynamics quickly.

Mieghem et al proposed a hop-by-hop destination based
only (HbHDBO) QoS routing algorithm [9] Based on TAM-
CRA [10] and its exact modification SAMCRA. HbHDBO
has the worst case complexity ��� � �
 �!#" � � �#�$� � �#% ! � ,
where � is the number of non-dominated paths maintained
at each node and % is the number of constraints being con-
cerned with. A node that runs HbHDBO uses a modi-
fied Dijkstra’s algorithm to compute � non-dominated paths
for each destination, using a non-linear weight function

� �'&����)(+* �-, � 	/.1032� 	�4 , where � � is the constraint on metric

� � . For HbHDBO to work correctly, global network state
is required at each node, and routing constraints must also
be known a priori. However, in the worst case, � can grow
exponentially large; and the performance of HbHDBO also
varies with the number of routing constraints.

Sobrinho uses an algebraic approach and investigates the
path optimization problem in the context of Hop-by-Hop
QoS routing[12]. In Sobrinho’s algebraic framework, rout-
ing is separated into path weight functions that define rout-
ing optimization requirements (e.g., widest-shortest path,
most-reliable path), and the algorithms that compute the op-
timal paths based on the aggregated metric defined by the
weight function being used. Sobrinho establishes the al-
gebraic properties that a path weight function must have,
in order for any routing algorithm to converge correctly
(i.e., to give the optimal paths w.r.t. the aggregated met-
ric). Though the results obtained by Sobrinho establish a
generalized framework for QoS-oriented path optimization,
they cannot be simply applied to constrained path optimiza-
tion, because paths are optimized only with respect to the
path weight function, rather than being computed to satisfy
multiple constraints.

It is clear from the above summary of related work that
existing distributed MCP algorithms require a consistent
view of global network state at each node, and some even
assume that the distribution of arriving routing constraints
is known, which is not true or hardly achievable in practice.
On the other hand, most proposed QoS path optimization
algorithms optimize routing based only on an aggregated
metric, and therefore cannot be applied to path optimization
subject to multiple constraints.

In this paper, we propose, analyze, and validate the
multi-constrained path optimization routing (MPOR) proto-
col. Nodes that run MPOR use distance vectors to exchange
route information only amongst neighbors, and do not re-
quire knowing the global network state or the potential ar-

riving constraints. MPOR solves the general � -constrained
path optimization by distributively computing an � -optimal
path set (the first � shortest paths w.r.t. the given optimiza-
tion metric) for each destination in the network, in such a
way that feasible paths can be found with a small value of
� . Because multiple paths are maintained at each node, as
in TAMCRA [10] and HbHDBO [9], MPOR also resolves
the multi-constrained path (MCP) selection simultaneously.
MPOR operates in line with IP routing (i.e., table-driven,
hop-by-hop, and connection-less), and is able to optimize
routing w.r.t. a singular metric (the case in the conventional
MCPO), as well as any logical distance that considers mul-
tiple routing metrics, provided that the path function being
used is both (+!�� ! � !���� and ����! � !���� 1.

The rest of this paper is organized as follows. Section
2 introduces the network model and background knowl-
edge used in our discussion. Section 3 describes the op-
eration principles of MPOR, the ordered loop-free condi-
tion o-LFC, the process of path weight propagation, and
the convergence property of MPOR. Section 4 presents the
complexity analysis and Section 5 presents extensive simu-
lation results of how effectively MPOR solves both multi-
constrained path selection and routing optimization. Sec-
tion 6 presents the concluding remarks.

2 System model

We model the network as a directed graph � �
	�� ���� ,
where � is the set of nodes and is the set of links inter-
connecting the nodes. � and ! are the cardinalities of �
and , i.e., � � � � � and ! ��� �� , respectively.

We assume that each link 	 ���� � � ����� ����� is associ-
ated with a link weight vector � ������� � ��	�� � � � ������� ����� ,
in which � � is an individual weight component, i.e., a
single routing metric. Accordingly, any path & from a
source to a destination can be assigned a path weight vec-
tor � 0 ��	�� 0 � � � 0� ����� � 0 � � , where � 0� �! #"%$'& (�) 0 � �����	� � ,
if � � is an additive metric (e.g., delay); or � 0� �(*�+� ��� � �����	� ��� � ��� � ��& , if � � is a minimal metric (e.g.,
bandwidth) 2.

The logical distance (LD) of path & is given by a path
function , 0 based on the weights of its consisting links.
In QoS routing, , 0 is usually used to specify how the
routing should be optimized. In the bandwidth-inversion

1Monotone means that the logical distance of a path cannot decrease
when the path is extended, and isotone means that the order - between two
paths must be preserved when they are prefixed or suffixed by a common
third path. Readers can refer to [13] for details.

2A minimal routing metric means that its path measurement is deter-
mined by the minimal value of the corresponding metric of all links in the
path; while an additive or multiplicative routing metric means that its path
measurement equals to the sum or product of the corresponding metric of
all links along the path. We do not consider multiplicative metrics because
they can be translated into additive metrics by using logarithm.

shortest-path, e.g., , 0 � " $'& (�. . ��� � 2 � �/� � � & , where0 ������� � is the available bandwidth of 1�/� � , such that the
shortest path, in term of inverted bandwidth, is preferred;
while in the most-reliable path routing, we can define , 0 �
 "%$'& (3254�6�7 �'&98 !;: �����	� ��� �� <��� � � & , where &98 !;: �����	� � is the
reliable probability of ��� � , such that the most reliable path
is preferred. Therefore, we call , 0 the optimization func-
tion, and the logical distance computed by , 0 the optimiza-
tion metric, given that the path with minimal logical dis-
tance is also optimal w.r.t. the optimization requirements
implied by , 0 . Note that an optimization metric should not
be confused with the an actual routing metric, which can be
for instance bandwidth or delay.

It is worth pointing out that logical distances are not nec-
essarily simple real numbers. A logical distance is a real
number only if the optimization function , 0 can be given
by a close-form equation, as for the cases of the bandwidth-
inversion shortest path ("%$'& (�. . ��� � 2), the most-reliable
path (" $'& (254�6�7 �'&98 !;: �����	� ���), or the aggregated metric
used in the Interior Gateway Routing Protocol (IGRP) [2]:
, 0 �= � �> , where � is a positive constant, and ?
are the path length and capacity, respectively. Otherwise,
a logical distance can be a tuple consisting of the multiple
routing metrics being considered. For example, for widest
shortest-path (WSP) routing, a path with the shortest dis-
tance (e.g., hops) is preferred, and if multiple such short-
est paths exist, the one with the maximal bandwidth is pre-
ferred. For WSP, , 0 is defined by � ?@��� � �	(A�+� � 0 ��� ��� � ,
in which ?��/� � and

0 ��� � are the distance and bandwidth of
each comprising link ��� � along the path. As the result, to
compare the precedence between paths, only bandwidth or
distance is not enough. Tuple BC? � 0ED has to be used as the
logical distance for each path (? and

0
are distance and

bandwidth, respectively), and path & with logical distance
BC? � � 0 � D

is better than path F with BC? � � 0 � D , only if

? � BG? ��H �I? � �J? ��K 0 � DL0 � � (1)

Similarly, in least-cost shortest-path routing (LCSP), tuple
BM? � % D is used as the logical distance for each path, in
with ? is the distance and % is the cost. Function , 0 is
defined by �+ N? ��� � �O % ��� � � over all comprising link ��� �
of a path. Path & with BP? � � % � D

is preferred over path F
with BC? � � % � D , only if

? � BQ? ��H �1? � �#? ��K+% � B�% � � (2)

By extrapolating the real-number metrics used in conven-
tional best-effort routing to logical distances, it is handy to
compute optimal paths in the context of QoS routing, pro-
vided that a total order properly exists amongst the logical
distances defined by the path function , 0 being used, as we
further discuss in the next section.

3 The Multi-Constrained Path Optimization
Routing Protocol (MPOR)

MPOR attempts to find the optimal path for the optimiza-
tion metric defined by an optimization function , 0 , and this
path must also be feasible w.r.t. the given constraints, if
there is any.

To achieve the optimal routing defined by , 0 , MPOR
uses distance-vector routing to distributively compute the
shortest path w.r.t. the optimization metric calculated by
, 0 . However, as we discussed in Sec. 1, the shortest path
computed based only on a single aggregated metric may
not meet the multiple constraints being considered. There-
fore, MPOR maintains an � -optimal path set for each des-
tination. A generalized loop-free condition o-LFC is intro-
duced, which allows MPOR to choose any neighbor satis-
fying it as the successor for a destination without causing
routing loops. A path weight propagation and deduction
process is used to keep track of the raw weight � 0 of each
path in the construction of the � -optimal path set, which en-
ables MPOR to verify whether feasible paths can be found
when a routing request arrives. Lastly, we show that the
convergence of MPOR can be ensured if the optimization
function , 0 being used is both (+!�� ! � !���� and ����! � !���� .

We show through extensive simulations that satisfying
routing success ratios can be achieved with a small value of
� (e.g., � ���), and the feasible paths being found also have
high probabilities to be optimal or near-optimal w.r.t. the
given , 0 .
����� �	����
����������������������� �"!

When computing the first � shortest paths for a desti-
nation, a node may use multiple neighbors as successors
to reach this destination. Hence care must be taken to en-
sure that routing loops are not formed because nodes choose
their successors distributively. Theorem 3.1 introduces the
ordered loop-free condition (o-LFC), which is a generalized
loop-free condition derived from the source node condition
(SNC) in [4], for computing loop-free � -optimal path set in
MPOR.

Let ? �# denote the logical distance from node � to des-
tination $ as known by node � . ? �# � denotes the logical
distance ? �# from node � , which is a neighbor of node � ,
to destination $, as reported to node � by node � . % ? �#
denotes the feasible logical distance (FLD) of node � for
destination $, which is an estimate of the minimal logical
distance maintained for destination $ by node � .
Theorem 3.1. (o-LFC) If a total order relation & , and the
associated strict order ' , can be properly established on the
logical distances defined by a given , 0 , then a node � is free
to choose any neighboring node � from its neighbor set � � ,

as the successor to reach destination $ without causing rout-
ing loops, provided that the following condition is satisfied:

 ? �# � '(% ? �# � � � � �
(3)

Proof. For any neighbor � satisfying (3), % ? �# ')% ? �# .
Therefore, given that all estimates are properly updated,
loop-freedom is obtained, because the % ? s of all the
nodes along a path to destination $ are strictly ordered in
a decreasing manner. Once a total order can be properly
established on the logical distances calculated by , 0 , the
formal proof of o-LFC is similar to that of SNC (see [4],
Theorem 1, pp. 132), which is omitted here due to space
limitations.

A set of logical distances * is total-ordered w.r.t. & if
the following four properties are satisfied: (1) & is reflexive,
i.e., *+& * �-, * �.* ; (2) & is anti-symmetric, i.e., if *"& :
and :	& * , then * � : ; (3) & is transitive, i.e., if */& : and
:0& � , then *1& � ; and (4) for , * � : �2* , either *1& : or
:3&�* . We use *4'J: to denote that *4&J: while *65� : .

For example for WSP, if ?#�'& � and ?��1F � are the
logical distances of two paths & and F , respectively, then
 ?�� & �7' ?��1F � only if ? 0 B ?98 H �1? 0 � ?98 K 0 0 D0 8); for LCSP, ?��'&��:'L ?��1F � only if ? 0 BL?/8�H �1? 0 �
?98 K+% 0 B�%;8�� .

When only a single additive metric is considered, & and
' reduce to the normal < and B ; and o-LFC reduces to the
source node condition (SNC) in [4], which considers path
distances in positive real numbers only, on which the total
order < and B are always well defined.

���>= �6
?�@�BADC��E���F
:�G�E��H@�E
JIE�@K.�LM��� �"!

A node � that runs MPOR maintains a routing entry for
each destination $, which includes feasible logical distance
% ? �# , current logical distance ? �# and N �# – the successor
set chosen for $. Node � maintains a neighbor table that
records the logical distance ? �# � reported by each node
� in its neighbor set � � for each destination $; and a link
table that reflects the link state � ��� � � � for each adjacent
link ��� � � � � � � .

Because every node must run a separate copy of MPOR
and runs MPOR for each destination, we focus on node
� running MPOR to compute the � -optimal path set for a
destination $. It should be pointed out that � may receive
and record up to � (the shortest, the second shortest and
up to the � th shortest) values of ? �# � from each neighbor
� ; node � also reports to its neighbors the first � shortest
logical distances from itself to destination $, of which the
minimal value is also used as the feasible logical distance
% ? �# of node � . For the destination $, we have ? ## �PO� ,

% ? ## � O� , and ? �#-# � O� �-, � � � # , where O� is the zero
as defined by , 0 . When a node is powered up, % ? is set

to O� , the infinity as defined by , 0 , and all the other entries
are set to empty. We also assume that node � knows the
state of each outgoing link � �1� � � � � �)� � � . When node �
receives an input event at time

�
, it behaves in one of three

possible ways:

1. Node � is idle and all estimates are left unchanged

2. Node � receives ? �# from neighbor � , updates the es-
timates ? �# � and leaves all other estimates unchanged

3. Node � updates its successors set N �# � � � for destination
$ based on Eq. (3), i.e.,

N �# � � � � 	�� � ? �# � � � �J'(% ? �# � � � � � � � � � (4)

and updates the feasible logical distance

% ? �# � � � � (*�+� � ? �# � � � ���) �� ��� � � � � � ��� (5)

for all ? �# reported by each neighbor � , and over all neigh-
bors in � � . �� ��� � � � is the logical distance of the adjacent
link ��� � , and � is the binary operator defined by , 0 , which
is used to combine two paths (or links) and compute the log-
ical distance of the resulting composite path. Node � also
re-computes the first � shortest ? �# maintained for $, and
sends neighbors updates if any change occurs; otherwise, it
leaves all other estimates unchanged. �

As with the distributed Bellman-Ford (DBF) algorithm,
MPOR uses distance vectors to communicate logical dis-
tances only amongst neighboring nodes, and therefore
avoids expensive routing overhead caused by disseminating
link-state information throughout the network. However,
major differences exist between MPOR and DBF. MPOR
can optimize the routing as defined by a given optimization
function , 0 , as well as the simple metrics used in conven-
tional best-effort routing. MPOR maintains the first � short-
est paths for each destination, and therefore is also able to
support multi-constrained path selection; Lastly, MPOR is
a loop-free multipath QoS routing protocol due to the use of
o-LFC (Theorem 3.1), which allows nodes to choose their
successors independently without causing loops.

��� � 	 A ���:I�����
 ��� C� �L��� ��� ��A � �EH K
As long as a node finds neighbors that satisfy o-LFC,

it can update its routing table without having to coordinate
with its neighbors (Theorem 3.1).

When node � is unable to find neighbors satisfying o-
LFC for destination $, must increase % ? �# in a way that no
loops can be created. MPOR uses a scheme similar to that
used by DUAL [4] to achieve instantaneous loop freedom.
More specifically, diffusing computations are used to coor-
dinate upstream nodes in the path for destination $, when

node � detects the increase of logical distance and needs to
raise its feasible logical distance for $, before another set
of feasible successors can be safely obtained. Due to space
limitations, we omit the details here and readers can refer to
[4] for more details.

����� �2�@����H C��E���P��
:ADC���� � ��
���C � 0
For a path & in the � -optimal path set computed for des-

tination $, besides the logical distance, its raw path weight
� 0 must also be maintained, because we need � 0 to ver-
ify whether & can be a feasible path when a routing request
arrives. To achieve this, MPOR uses a path weight prop-
agation and deduction process to keep track of � 0 , which
exploits the same routing messages used for the exchange
of logical distances, and as such incurs no more communi-
cation overhead.

More specifically, in MPOR, the distance vector report-
ing a path & for $ by node � is a tuple of 	 $ �� ? �# ��&
� �# � ,
in which ? �# and &
� �# � 	�& � �# � � � � ����� &
� �# ��(� ����� &
� �# � % � �
are the logical distance and the associated path weight for & ,
respectively, and % is the number of constraints. Provided
that & � ## ��(� � �

for an additive metric and & � ## ��(� � �
for a minimal metric, then after receiving the distance vector
from neighbor � via adjacent link ��� � , whose link weight is
� ��� � � � �
	��� � ����� ��� � ����� � > � , node � can compute the cor-
responding path weight for $ by

& � �# ��(� � � & � �# ��(� � � � for additive metrics(*�+� � & � �# ��(� ��� ��� for minimal metrics

(6)

where (� � � � ����� % .

����� �6
�C���� �! @ADC��E��� "����H C��E��� , 0 A ��� H ����#L��� �
L� � H@� C�����
 C���� A I	
�A C�� K
We argue that the choice of , 0 is policy-oriented or

application-oriented in practice, because there does not ex-
ist an absolutely better or best routing optimization met-
ric for a given network. Therefore, the strategy adopted
by MPOR is to specify the properties that an optimization
function must have, instead of specifying a specific , 0 . The
advantage of this approach is that, diversified routing opti-
mization policies can be defined and implemented as long
as , 0 is properly selected, and the convergence of MPOR is
also ensured simultaneously. This is formally formulated in
the following theorem.

Theorem 3.2. If the , 0 being used is both monotone and
isotone, within finite time after the last link-state change oc-
curs in the network, MPOR converges correctly, i.e., main-
tains the optimal path for each destination.

j

1 2

5 5

-1

-1

(b)

s

2

j1
(2M,1)

(5
M,
1)
 (5M,1)

(2M,1)

(a)

Figure 1. Counter examples – when isotonic-
ity or monotonicity fail

Proof. According to the sufficient and necessary algebraic
conditions for routing convergence [13] (Sec. 6.2, Propo-
sition 3-5), a distance vector routing protocol always con-
verges to optimal paths w.r.t. the optimization metric de-
fined by a given , 0 , if and only if , 0 is both monotone and
isotone. Because in essence MPOR exploits distance vec-
tors and computes the optimal logical distance for each des-
tination using Bellman-Ford iteration (Eq. (5)), the results
established in [13] also hold for MPOR.

The reason that , 0 has to be monotone and isotone, for
MPOR to converge correctly, can be illustrated by the ex-
amples depicted in Figure 1. We assume that nodes used in
our examples run a DBF-like distance-vector protocol.

Unlike WSP, shortest-widest path (SWP) routing at-
tempts to find the path having the maximal bandwidth, and
the one with shortest distance is selected if multiple such
paths are found with the same bandwidth. It is easy to ver-
ify that isotone is not true in SWP. In Figure 1 (a), links
are labeled with (B,D) where

0
is the bandwidth and ?

is the distance (in hops), respectively. Node
�

chooses
node � as the successor for destination $ because path
� � � � ��$ � offers more bandwidth (5M) than path � � �E$ � (2M);
node N has no other choice but node

�
as the successor

for destination $. As a result, when each node selects its
successor distributively, the path formed from N to $ is
� N�� � � � �E$ � �EB ������� D , which is not optimal because path
�I� � � �E$ � �EB ����� � D and B ����� � D ' B ������� D .

Figure 1 (b) is an example in which the monotone prop-
erty does not hold. Assume that link � � � and � � � have nega-
tive cost -1, and the , 0 used is simple addition � � where � � is the cost of every intermediate link in the path. It is
easy to see that the paths for destination $ at nodes 1 and
2 can oscillate and never converge. In this simple scenario,
the result is obvious, because DBF cannot converge if the
topology contains negative cycles [3]. More optimization
functions can be found in [12, 13].

4 Complexity Analysis

At node � , the space complexity is ������� � � � � � �
�#� �
������� � � � �#� , where � � � � is the number of neighbors of node
� , because the main routing table and each neighbor table
have ��� �#� entries, and each entry can keep up to � routes
for each destination. The computation complexity is the
time taken to process distance vectors regarding a same des-
tination, which is ��� ��� � � � � . When only the shortest path is
maintained, then the space and computation complexity re-
duce to ��� � � � � �#� and ��� � � � � � , respectively, which are the
same as that of DBF.

5 Simulation

We implemented MPOR in the network simulator NS-
2[11] and conducted extensive simulations to test its perfor-
mance. Three types of topologies are used in our simula-
tion experiments: ANSNET, Pure-random graph and Wax-
man graph. ANSNET is widely used by Chen and Nahrst-
edt [1] and other researchers to study QoS routing algo-
rithms. In Pure-random graphs, the existence of the link
between any two nodes is determined by a constant proba-
bility 	�&�� � � B &��PB � � , while in Waxman graphs, &�� is de-

fined as &�� � � ��	
�� � � B � �	� B � � where � is the distance
between these two nodes and is the maximal inter-nodal
distance in the topology, such that inter-nodal distance is
also accounted for.

� ��� � ��� �J����
 ��A K ���JIE�
�ADC�� K
The evaluation metrics we used in this case are success

ratio (SR), existence percentage (EP) and competitive ratio
(CR), which are introduced by Yuan [14] and defined as
follows.

N�� � number of routing requests being routed
number of total routing requests

(7)

!�� � number of requests routed by exact algorithm
number of total routing requests

(8)

%�� � number of requests routed by heuristic algorithm
number of requests routed by exact algorithm

(9)

!�� actually equals the SR of an exact algorithm, and
indicates how difficulty a feasible path can be found to meet
the given request (a small EP means that it is hard to find a
feasible path for the given constraints); %�� indicates how
well a heuristic algorithm can work in comparison to the
exact algorithm with the same !�� .

1The purpose of such configuration is to compare with existing simula-
tion results of MCP algorithms, e.g. in [6].

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.88

0.9

0.92

0.94

0.96

0.98

1

Existence ratio

C
om

pe
tit

iv
e

ra
tio

MPOR−1
MPOR−2
MPOR−3
MPOR−5

Figure 2. ANSNET (32 nodes and 54 links),
two constraints, CR Vs. EP and x = 1,2,3,5.
Randomly chosen sources and destinations

For all configurations, all link weight components are
uniformly distributed in � ��� � � ��� , except for ANSNET in
the case of two constraints, in which the first component
is uniformly distributed in � � � � ��� , while the second is uni-
formly distributed in � � � � � ��� 1. All sources and destina-
tions are randomly chosen from the networks and all re-
sults presented here are averaged over 5000 randomly gen-
erated routing requests, for different ranges of routing con-
straints. Routing metrics being considered are additive un-
less specified otherwise, because most algorithms proposed
for MCP, and those being used to compare with MPOR
in our simulations, only address additive constraints. The
, 0 used by MPOR is a linear combination that considers
each link-weight component equally, which is defined by
, 0 � � � � � � � ��� � , if there are � constraints. It is easy
to verify that this function is both monotone and isotone.

As the first step, we study how the performance of
MPOR varies with the size of the optimal path set (i.e.,
the parameter �) maintained for each destination, using
ANSNET as the topology. The results are presented in
Fig. 2 and Fig. 3, respectively. Fig. 2 indicates that a � -
optimal path set for every destination is sufficient for MPOR
to achieve satisfying competitive ratios (no less than ���	�),
for all ranges of constraints (EP ranges from 0.25 to 0.99),
when sources and destinations are randomly chosen from
the network. Also as shown by Fig. 3, MPOR performs
even better when sources and destinations are chosen from
boundary nodes, i.e., potential feasible paths traverse from
coast to coast, because a � -optimal path set configuration
achieves almost

��� � � CRs for all ranges of constraints. We
also notice that the CR of MPOR approaches to a saturation
level and cannot be improved anymore even by increasing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Existence ratio

C
om

pe
tit

iv
e

ra
tio

MPOR−1
MPOR−2
MPOR−3

Figure 3. ANSNET (32 nodes and 54 links),
two constraints, CR Vs. EP and x = 1,2,3.
Coast-to-coast sources and destinations

the value of � . The main reason is that the o-LFC condition
has to be satisfied before a neighbor can be selected into the
successor set, and therefore some feasible paths may be ex-
cluded due to the , 0 being used. In the following, parameter
� ��� unless specified otherwise.

The MCP algorithms that we use to compare with MPOR
are EDFS [7], KKT (Korkmaz, Krunz and Tragoudas [6])
and JSP (a variation of Jaffe’s algorithm [5]: Dijkstra’s
shortest path algorithm w.r.t. the aggregated link-cost func-
tion � �����	� � ��
 �� . ��� � 2� � � ��� . �/� � 2� �

�
), in which � � is the con-

straint on routing metric � � . As the baseline, we also im-
plement an exact algorithm, which has exponential running
time, but can give all feasible paths for a given routing re-
quest. The SR comparisons of routing with two constraints
using ANSNET, Pure-random and Waxman graphs are pre-
sented in Figs. 4 and 5, respectively. The results of routing
with more constraints are presented in Fig. 6.

JSP lags behind all the other algorithms in all scenar-
ios, which further confirms that paths optimized w.r.t. a
single aggregated metric may not be a good approach for
constrained path selection. EDFS outperforms MPOR and
other algorithms when the constraints are tight, and per-
forms worse when the constraints are moderate and loose,
for which EDFS has to iterate over more exploring se-
quences to achieve a better SR. Though both KKT and
MPOR perform consistently and similarly well, MPOR can
solve general � -constrained MCP problem, while KKT only
deals with two constraints and its running time is unpre-
dictable if constraints are tight [7]. We also observe that
the SR of MPOR is insensitive to the number of constraints
in all ranges of constraints and for all the topologies being
simulated. Last but not least, we point out that all the algo-

c1[50,65],c2[200,260] c1[75,90],c2[300,360] c1[100,115],c2[400,460]c1[125,140],c2[500,560]c1[150,165],c2[600,660]
0

0.2

0.4

0.6

0.8

1

Constraint C
1
 and C

2
 are uniformly distributed, randomly chosen source−destination pairs

S
uc

ce
ss

 r
at

io
 (

S
R

)

c1[75,90], c2[300,360] c1[100,115], c2[400,460] c1[125,140], c2[500,560] c1[150,165], c2[600,660]
0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

io
 (

S
R

)

Constraint C
1
 and C

2
 are uniformly distributed, coast−to−coast source−destination pairs

EXACT

MPOR

EDFS

JSP

KKT

EXACT

MPOR

EDFS

JSP

KKT

Figure 4. ANSNET, two constraints, SR com-
parison, x = 5

[10,20] [20,30] [30,40] [40,50] [50,60]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All constraints are uniform ~ [x
1
,x

2
]

S
uc

ce
ss

 R
at

io

Pure−random Graph

EXACT
MPOR
EDFS
JSP
KKT

[10,20] [20,30] [30,40] [40,50]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All constraint are uniform ~ [x
1
,x

2
]

S
uc

ce
ss

 R
at

io

Waxman Graph

EXACT
MPOR
EDFS
JSP
KKT

Figure 5. Pure-random (39 nodes and 75
links) and Waxman graphs (40 nodes and 95
links), two constraints, SR comparison, x = 5

rithms we use to compare with MPOR are centralized algo-
rithms and require the global network state at every source
node, while MPOR is a fully distributed protocol.

� �>= �M�E���J�E�
 H ��� K C ��AL�E����� ��
�C�����A I	
:ADC���K
We investigate the � -additive-constraint widest-path

(in terms of inverted bandwidth) routing and � -additive-
constraint most-reliable path routing, which represent the
scenarios in which the metrics to be optimized are minimal
and multiplicative, respectively.

The challenge here is how to communicate the band-
width : � ������� � or reliability probability & �����	� � of a link <�/� � throughout the network without using link-state broad-
casting. Our approach is to define an , 0 (monotone and
isotone) that translates : � �����	� � or & ������� � into an additive

[20,30] [30,40] [40,50] [50,60] [60,70]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All constraints are uniform ~ [x
1
,x

2
]

S
uc

ce
ss

 R
at

io

Four Constraints

All constraints are uniform ~ [x
1
,x

2
]

EXACT
MPOR
EDFS
JSP

[20,30] [30,40] [40,50] [50,60] [60,70]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

io

Eight Constraints

EXACT
MPOR
EDFS
JSP

Figure 6. ANSNET, multiple constraints, SR
comparison, x = 5

metric, and uses it as the logical distance communicated by
distance vectors. More specifically, for widest-path opti-
mization, we define , 0 as

, 0 ��� " $'& (
�

: � �����	� � � 0 ��� �� ��� � � & (10)

where
0 ��� is an estimate of the maximum bandwidth over

all the links in the network, then : � � 0 ��� can be thought
of as the normalized bandwidth of link 1�/� � . For most-
reliable path optimization, we define , 0 as

, 0 ��� " $'& (254�6/7�� & ������� � � �� ��� � � & (11)

Figure 7 and Fig. 8 demonstrate the probability distribu-
tion functions (PDF) of how a feasible path can be found
within the � -optimal path set constructed by MPOR. First,
as presented by the legends in Fig. 7 and Fig. 8, both , 0
(10) and , 0 (11) achieve satisfying competitive ratio (CR)
for the given two additive constraints. The CR for function
(10) is above ��� � � � , and the CR for function (11) is above
� � �	� � , for all ranges of existence percentage (EP), which
varies between

�
�
� � and

�
� � � (i.e., from tight constraints

to loose constraints). Second, more than �
� � of the feasi-

ble paths found by MPOR are also the optimal paths w.r.t.
the specified , 0 , and almost ��� � of the feasible paths can
be found if we also consider the second and third shortest
paths computed by MPOR. This indicates that the feasible
paths computed by MPOR have a high probability of being
optimal, or near-optimal paths w.r.t. the given optimization
metric. Note that in some prior work [8] MCPO is defined
as selecting the shortest path from the set of feasible paths
only, which therefore may not be globally optimal w.r.t. the
given , 0 . In this case, it is intuitive that MPOR has an even
higher probability of finding the constrained optimal path.

1 2 3 4 5 6 7 8
0.7

0.75

0.8

0.85

0.9

0.95

1

The parameter x

P
D

F
 o

f f
in

di
ng

 a
 fe

as
ib

le
 p

at
h

EP=0.0492, CR=0.9919

EP=0.2110, CR=0.9820

EP=0.6952, CR=0.9462

EP=0.9798, CR=0.9628

Figure 7. ANSNET, two constraints, optimize
w.r.t. bandwidth

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

The parameter x

P
D

F
 o

f f
in

di
ng

 a
 fe

as
ib

le
 p

at
h

EP=0.2036, CR=0.9666

EP=0.6290, CR=0.9768

EP=0.9688, CR=0.9666

Figure 8. ANSNET, two constraints, optimize
w.r.t. reliability

6 Conclusion and future work

MPOR is a fully distributed multi-constrained routing
and path optimization protocol that exploits distance vec-
tor routing, and does not require global network state to be
maintained at every node, or other unrealistic assumptions
such as knowing the distribution of arriving constraints at
each node. MPOR can optimize routing w.r.t. any logi-
cal distance computed by an optimization function , 0 , pro-
vided that , 0 is both (!�� ! � !���� and ���#! � !���� .

In the future, we are interested in addressing the routing
overhead incurred by diffusing computations when path dis-
tances increase or link failures occur. We are also interested
in using multiple , 0 for different classes of traffic flows,
which is meaningful in the context of a DiffServ model, for
example.

References

[1] S. Chen and K. Nahrstedt. On Finding Multi-constrained
Paths. In Proceedings of ICC’98, pages 874–879, June,
1998.

[2] J. Doyle. Routing TCP/IP. Cisco Press, 1998.
[3] T. H. C. et al. Introduction to Algorithms, Second Edition.

McGraw-Hill, 2003.
[4] J. J. Garcia-Lunes-Aceves. Loop-free Routing Using Diffus-

ing Computations. IEEE/ACM Trans. Netw., 1(1):130–141,
1993.

[5] J. M. Jaffe. Algorithms for Finding Paths with Multiple Con-
straints. IEEE Networks, 14:95–116, 1984.

[6] T. Korkmaz, M. Krunz, and S. Tragoudas. An Efficient Al-
gorithm for Finding a Path Subject to Two Additive Con-
straints. In Proceedings of the ACM SIGMETRICS, pages
318–327, 2000.

[7] Z. Li and J. J. Garcia-Luna-Aceves. Solving the Multi-
Constrained Path Selection Problem by Using Depth First
Search. In Proceedings of QSHINE’05, Orlando, Florida,
August, 2005.

[8] W. Liu, W. Lou, and Y. Fang. An Efficient Quality of Ser-
vice Routing Algorithm for Delay Sensitive Applications.
Computer Networks, 1(47):87–104, 2004.

[9] P. V. Mieghem, H. D. Neve, and F. Kuipers. Hop-by-
Hop Quality of Service Routing. Comput. Networks, 37(3-
4):407–423, 2001.

[10] H. D. Neve and P. V. Mieghem. TAMCRA: A Tunable Ac-
curacy Multiple Constraints Routing Algorithm. Computer
Communications, 23:667–679, 2000.

[11] NS2. the Network Simulator, http://www.isi.edu/nsnam/ns/.
[12] J. L. Sobrinho. Algebra and Algorithms for QoS Path

Computation and Hop-by-Hop Routing in the Internet.
IEEE/ACM Trans. Netw., 10(4):541–550, 2002.

[13] J. L. Sobrinho. Network Routing with Path Vector Proto-
cols: Theory and Application. In Proceedings of ACM SIG-
COMM, 2003.

[14] X. Yuan. Heuristic Algorithms for Multiconstrained
Quality-of-Service Routing. IEEE/ACM Trans. Netw.,
10(2):244–256, 2002.

